Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea.

نویسندگان

  • Alicia del Hoyo
  • Raquel Alvarez
  • Eva M del Campo
  • Francisco Gasulla
  • Eva Barreno
  • Leonardo M Casano
چکیده

BACKGROUND AND AIMS Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. METHODS Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. KEY RESULTS Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (F(v)/F(m)), the quantum efficiency of PSII (Φ(PSII)) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. CONCLUSIONS The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen.

Organic pollutants effects on lichens have not been addressed. Rehydration is critical for lichens, a burst of free radicals involving NO occurs. Repeated dehydrations with organic pollutants could increase oxidative damage. Our aim is to learn the effects of cumene hydroperoxide (CP) during lichen rehydration using Ramalina farinacea (L.) Ach., its photobiont Trebouxia spp. and Asterochloris e...

متن کامل

Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses

The current literature reveals that the intrathalline coexistence of multiple microalgal taxa in lichens is more common than previously thought, and additional complexity is supported by the coexistence of bacteria and basidiomycete yeasts in lichen thalli. This replaces the old paradigm that lichen symbiosis occurs between a fungus and a single photobiont. The lichen Ramalina farinacea has pro...

متن کامل

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichen-forming Fungi of Ramalina farinacea and Ramalina fastigiata

This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (...

متن کامل

Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America.

• Premise of the study: Many lichens exhibit extensive ranges spanning several ecoregions. It has been hypothesized that this wide ecological amplitude is facilitated by fungal association with locally adapted photobiont strains.• Methods: We studied the identity and geographic distribution of photobionts of the widely distributed North American lichen Ramalina menziesii based on rbcL (chloropl...

متن کامل

Effects of Lichenic Extracts (Hypogymnia physodes, Ramalina polymorpha and Usnea florida) on Human Blood Cells: Cytogenetic and Biochemical Study

Several lichen species have been used for medicinal purposes throughout the ages, and they were reported to be effective in the treatment of different disorders including tuberculosis, hemorrhoids, ulcer, dysentery and cancer. It is revealed that they may be easily accessible sources of natural drugs that could be used as a possible food supplement or in pharmaceutical industry after their safe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2011